一般化可能性(Generalizability)と過適合(overfitting)ってなあに?
臨床研究などである疾患におけるリスク因子を同定するとき(例えば、IPFにおける死亡リスク因子)やバイオマーカーやAI、診断モデルの開発では、「開発(探索)コホート」と「検証コホート」を分けて解析を行うことが一般的です。まず、開発コホートでリスク因子の同定やモデル構築を行い、検証コホートでそれが機能するかどうかを確かめます。その目的は、モデルや結果の一般化可能性を確保し、過適合を防ぐことにあります。以下では、これらの概念を解説します。一般化可能性(Generalizability)とは?一般化可能性とは、モデルや研究結果が新しいデータや異なる集団に対しても同じように適用できる能力を指します。つまり、「特定のデータセットや環境だけでなく、他の状況でも有効に機能するか」を評価する概念です。なぜ一般化可能性が重要なんでしょうか?一般化可能性が高い研究やモデルは、リアルワールドのさまざまな状況で有用であり、信頼性の高い結果を提供します。逆に、一般化可能性が低い場合、そのモデルや結論は特定の環境に依存しており、新しいデータでは役に立たない可能性があります。具体例臨床研究例: ある薬の効果を調べる臨...